Item Details
Skip Navigation Links
   ActiveUsers:798Hits:20555908Skip Navigation Links
Show My Basket
Contact Us
IDSA Web Site
Ask Us
Today's News
HelpExpand Help
Advanced search

In Basket
  Journal Article   Journal Article
 

ID111415
Title ProperCarbon footprint of water management policy options
LanguageENG
AuthorShrestha, Eleeja ;  Ahmad, Sajjad ;  Johnson, Walter ;  Batista, Jacimaria R
Publication2012.
Summary / Abstract (Note)The growing concerns of global warming and climate change have forced water providers to scrutinize the energy for water production and the greenhouse gas (GHG) emissions associated with it. A system dynamics model is developed to estimate the energy requirements to move water from the water source to the distribution laterals of the Las Vegas Valley and to analyze the carbon footprint associated with it. The results show that at present nearly 0.85 million megawatt hours per year (MWh/y) energy is required for conveyance of water in distribution laterals of the Valley from Lake Mead resulting in approximately 0.53 million metric tons of CO2 emissions per year. Considering the current mix of fuel source, the energy and CO2 emissions will increase to 1.34 million MWh/y and 0.84 million metric tons per year, respectively, by the year 2035. Various scenarios including change in population growth rate, water conservation, increase in water reuse, change in the Lake level, change in fuel sources, change in emission rates, and combination of multiple scenarios are analyzed to study their impact on energy requirements and associated CO2 emissions.
`In' analytical NoteEnergy Policy Vol. 42; Mar 2012: p.201-212
Journal SourceEnergy Policy Vol. 42; Mar 2012: p.201-212
Key WordsWater Conveyance ;  Carbon Footprint ;  System Dynamics