Item Details
Skip Navigation Links
   ActiveUsers:812Hits:20010664Skip Navigation Links
Show My Basket
Contact Us
IDSA Web Site
Ask Us
Today's News
HelpExpand Help
Advanced search

In Basket
  Journal Article   Journal Article
 

ID115658
Title ProperTowards understanding the robustness of energy distribution networks based on macroscopic and microscopic evaluations
LanguageENG
AuthorLiu, Jiming ;  Shi, Benyun
Publication2012.
Summary / Abstract (Note)Supply disruptions on one node of a distribution network may spread to other nodes, and potentially bring various social and economic impacts. To understand the performance of a distribution network in the face of supply disruptions, it would be helpful for policy makers to quantitatively evaluate the robustness of the network, i.e., its ability of maintaining a supply-demand balance on individual nodes. In this paper, we first define a notion of network entropy to macroscopically characterize distribution robustness with respect to the dynamics of energy flows. Further, we look into how microscopic evaluation based on a failure spreading model helps us determine the extent to which disruptions on one node may affect the others. We take the natural gas distribution network in the USA as an example to demonstrate the introduced concepts and methods. Specifically, the proposed macroscopic and microscopic evaluations provide us a means of precisely identifying transmission bottlenecks in the U.S. interstate pipeline network, ranking the effects of supply disruptions on individual nodes, and planning geographically advantageous locations for natural gas storage. These findings can offer policy makers, planners, and network managers with further insights into emergency planning as well as possible design improvement.
`In' analytical NoteEnergy Policy Vol. 49; Oct 2012: p.318-327
Journal SourceEnergy Policy Vol. 49; Oct 2012: p.318-327
Key WordsEnergy Distribution Network ;  Distribution Robustness ;  Mitigation Strategy