Query Result Set
Skip Navigation Links
   ActiveUsers:761Hits:19993896Skip Navigation Links
Show My Basket
Contact Us
IDSA Web Site
Ask Us
Today's News
HelpExpand Help
Advanced search

  Hide Options
Sort Order Items / Page
CELLULOSIC ETHANOL (5) answer(s).
 
SrlItem
1
ID:   126494


Cellulosic ethanol production from agricultural residues in Nig / Iye, Edward; Bilsborrow, Paul   Journal Article
Iye, Edward Journal Article
0 Rating(s) & 0 Review(s)
Publication 2013.
Summary/Abstract Nigeria's Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km3 per annum respectively.
        Export Export
2
ID:   101412


Comparative analysis for power generation and ethanol productio / Seabra, Joaquim E A; Macedo, Isaias C   Journal Article
Seabra, Joaquim E A Journal Article
0 Rating(s) & 0 Review(s)
Publication 2011.
Summary/Abstract This work compares the technical, economic and environmental (GHG emissions mitigation) performance of power generation and ethanol production from sugarcane residual biomass, considering conversion plants adjacent to a sugarcane mill in Brazil. Systems performances were simulated for a projected enzymatic saccharification co-fermentation plant (Ethanol option) and for a commercial steam-Rankine power plant (Electricity option). Surplus bagasse from the mill would be used as fuel/raw material for conversion, while cane trash collected from the field would be used as supplementary fuel at the mill. For the Electricity option, the sugarcane biorefinery (mill+adjacent plant) would produce 91 L of ethanol per tonne of cane and export 130 kWh/t of cane, while for the Ethanol option the total ethanol production would be 124 L/t of cane with an electricity surplus of 50 kWh/t cane. The return on investment (ROI) related to the biochemical conversion route was 15.9%, compared with 23.2% for the power plant, for the conditions in Brazil. Considering the GHG emissions mitigation, the environmentally preferred option is the biochemical conversion route: the net avoided emissions associated to the adjacent plants are estimated to be 493 and 781 kgCO2eq/t of dry bagasse for the Electricity and Ethanol options, respectively.
Key Words CHP  Cellulosic Ethanol  Bioelectricity 
        Export Export
3
ID:   127224


Estimating maximum land use change potential from a regional bi / Sharp, Benjamin E; Miller, Shelie A   Journal Article
Miller, Shelie A Journal Article
0 Rating(s) & 0 Review(s)
Publication 2014.
Summary/Abstract The maximum amount of land for growing switchgrass for ethanol is estimated for a region in the southeastern U.S. Breakeven capacities are calculated for land in row crops, hay, pasture and marginal land. Characteristics of land categories inform potential land use change impacts as well as switchgrass profitability. Variable yields within and across land categories are translated into distributions of switchgrass net revenue. Breakeven curves are generated for a range of switchgrass prices. These curves provide upper bounds for further analysis of actual switchgrass adoption in context of broader economic forces and possible policy mechanisms to minimize environmental impacts. A farm-gate price of $55 Mg?1 is estimated for half of marginal and pasturelands to break even with switchgrass. At this price, only 20% of land in hay and a small fraction of row crop hectares break even. Half of hay and row crops hectares break even at approximately $90 Mg?1 and $100 Mg?1, respectively. At $60 Mg?1, sufficient land area can profitably produce switchgrass for ethanol to displace approximately 10% of gasoline consumed in Georgia, North Carolina, and South Carolina; however, this price only indicates breakeven capacity implying that higher prices may be necessary to realize 10% displacement.
        Export Export
4
ID:   109385


Higher US crop prices trigger little area expansion so marginal / Swinton, Scott M; Babcock, Bruce A; James, Laura K; Bandaru, Varaprasad   Journal Article
Babcock, Bruce A Journal Article
0 Rating(s) & 0 Review(s)
Publication 2011.
Summary/Abstract By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve.
        Export Export
5
ID:   101371


Impacts of facility size and location decisions on ethanol prod / Kocoloski, Matt; Griffin, W Michael; Matthews, H Scott   Journal Article
Matthews, H Scott Journal Article
0 Rating(s) & 0 Review(s)
Publication 2011.
Summary/Abstract Cellulosic ethanol has been identified as a promising alternative to fossil fuels to provide energy for the transportation sector. One of the obstacles cellulosic ethanol must overcome in order to contribute to transportation energy demand is the infrastructure required to produce and distribute the fuel. Given a nascent cellulosic ethanol industry, locating cellulosic ethanol refineries and creating the accompanying infrastructure is essentially a greenfield problem that may benefit greatly from quantitative analysis. This study models cellulosic ethanol infrastructure investment using a mixed integer program (MIP) that locates ethanol refineries and connects these refineries to the biomass supplies and ethanol demands in a way that minimizes the total cost. For the single- and multi-state regions examined in this study, larger facilities can decrease ethanol costs by $0.20-0.30 per gallon, and placing these facilities in locations that minimize feedstock and product transportation costs can decrease ethanol costs by up to $0.25 per gallon compared to uninformed placement that could result from influences such as local subsidies to encourage economic development. To best benefit society, policies should allow for incentives that encourage these low-cost production scenarios and avoid politically motivated siting of plants.
        Export Export