Query Result Set
Skip Navigation Links
   ActiveUsers:851Hits:20293283Skip Navigation Links
Show My Basket
Contact Us
IDSA Web Site
Ask Us
Today's News
HelpExpand Help
Advanced search

  Hide Options
Sort Order Items / Page
SMART CHARGING (3) answer(s).
 
SrlItem
1
ID:   183560


Do I need to charge right now? Tailored choice architecture design can increase preferences for electric vehicle smart charging / Lagomarsino, Maria; Der Kam, Martvan   Journal Article
Lagomarsino, Maria Journal Article
0 Rating(s) & 0 Review(s)
Summary/Abstract The increasing diffusion of electric vehicles (EVs) can challenge the stability of distribution grids. Smart charging systems can reduce the stress of EV charging on the grid, but the potential of the technology depends on EV drivers' participation in smart charging schemes. To investigate this potential, we conducted an online randomised-controlled experiment with two waves (baseline and experimental phase, N = 222), in which we examined drivers' preferences for smart charging and tested a behavioral intervention to increase the number of smart charging choices. We translated state-of-charge (SoC) information from percentage of battery level into miles corresponding to the battery level and tailored information, i.e., the number of driving days covered by the actual SoC based on participants’ personal driving profiles. Participants preferred to use smart charging systems to decrease costs and to increase renewable energy use. However, they tended to overestimate the importance of the battery SoC when setting charging preferences. This overestimation was especially evident for participants who only drive short distances and may be lead to inefficient use of smart charging technology. Translating battery SoC into tailored information corrected for this bias and increased the number of smart charging choices. Our findings illustrate how behavioral interventions can be leveraged to attain energy transition goals.
        Export Export
2
ID:   112930


Influence of plug-in hybrid electric vehicle charging strategie / Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe   Journal Article
Lunz, Benedikt Journal Article
0 Rating(s) & 0 Review(s)
Publication 2012.
Summary/Abstract The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility.
        Export Export
3
ID:   105796


Plug-in hybrid electric vehicle impacts on hourly electricity d / Claire Weiller   Journal Article
Claire Weiller Journal Article
0 Rating(s) & 0 Review(s)
Publication 2011.
Summary/Abstract In this study we explore the effects of different charging behaviors of PHEVs in the United States on electricity demand profiles and energy use, in terms of time of day and location (at home, the workplace, or public areas). Based on driving behavior statistics on vehicle distance traveled and daily trips (US DOT, 2003) in the US, we develop a simulation algorithm to estimate the PHEV charging profiles of electricity demand with plausible plug-in times and depth of discharge of the PHEVs. The model enables simulations of the impacts of various grid management strategies on the availability of vehicle charging in public places, the charge power levels and standards, scheduling charging in off-peak periods and policy measures to promote PHEV adoption. PHEV charging imposes a modest pressure on system load on the order of 560-910 Wp per vehicle. We find that enabling charging in places other than home increases the daily electric energy use of PHEV from 24% to 29% (1.5-2 kWh/day). Major findings of the different scenarios are that PHEVs with a 20 mile range (PHEV-20) shift 45-65% of vehicle miles traveled in the United States to electricity, compared with 65-80% for PHEVs with a 40 mile range (PHEV-40).
        Export Export