Query Result Set
Skip Navigation Links
   ActiveUsers:1310Hits:21285542Skip Navigation Links
Show My Basket
Contact Us
IDSA Web Site
Ask Us
Today's News
HelpExpand Help
Advanced search

  Hide Options
Sort Order Items / Page
PRODUCTION COST MODELING (2) answer(s).
 
SrlItem
1
ID:   180158


Grid impacts of highway electric vehicle charging and role for mitigation via energy storage / Mowry, Andrew M; Mallapragada, Dharik S   Journal Article
Mallapragada, Dharik S Journal Article
0 Rating(s) & 0 Review(s)
Summary/Abstract Highway fast-charging (HFC) stations for electric vehicles (EVs) are necessary to address range anxiety concerns and thus to support economy-wide decarbonization goals. The characteristics of HFC electricity demand – its relative inflexibility, high power requirements, and spatial concentration – have the potential to adversely impact grid operations as HFC infrastructure expands. Here, we investigate the impacts of scaled-up HFC infrastructure using an operations model of the 2033 Texas power grid with uniquely high spatial and temporal resolution. In the reference EV penetration case corresponding to 3 million passenger EVs on the road, we find that grid-HFC interactions increase system annual operational costs by 8%, or nearly $2 per MWh of load served. Greater impacts are observed for higher EV penetration cases. The high spatial resolution of the analysis reveals that the majority of increased costs can be attributed to transmission congestion on feeder lines serving a minority of HFC stations. Four-hour battery energy storage is shown to be more effective than demand flexibility as mitigation, due to the long duration of peak charging demand anticipated at HFC stations. Transmission network upgrades can also effectively mitigate grid-HFC interactions. Choosing the most effective mitigation strategy for each station requires a tailored approach.
        Export Export
2
ID:   166703


Long-term impacts of carbon and variable renewable energy policies on electricity markets / Levin, Todd   Journal Article
Levin, Todd Journal Article
0 Rating(s) & 0 Review(s)
Summary/Abstract We present a computationally-efficient optimization model that finds the least-cost generation unit expansion, commitment, and dispatch plan to serve hourly electricity demand and ancillary service requirements. We apply the model to a case study based on data from the electricity market in Texas (ERCOT) to analyze the market and investment impacts of several incentive mechanisms that support variable renewable energy (VRE) investments and carbon emission reductions. In contrast to many previous studies, the model determines least-cost VRE investments under different cost and incentive assumptions rather than analyzing scenarios where VRE expansion is pre-determined. We find that electricity prices can vary significantly under different incentive mechanisms, even when comparable generation portfolios result. Therefore, the preferred incentive mechanism depends on stakeholder objectives as well as the prevailing electricity market framework. Our results indicate that a carbon tax is more system cost-efficient for reducing emissions, while production and investment tax credits are more system cost-efficient for increasing VRE investments. Similarly, incentive mechanisms that reduce electricity prices may increase the need for separate revenue sufficiency mechanisms (e.g. a capacity market) more than a policy that increases electricity prices. Moreover, the impacts on consumer payments are not always aligned with changes in system costs. Overall, the analysis illustrates the importance of considering electricity market impacts in assessing the economic efficiency of VRE and carbon incentive mechanisms.
        Export Export